399 research outputs found

    Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure

    Get PDF
    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both \emph{in vivo} and \emph{in vitro}. In this paper we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.Comment: Non-final version submitted to Chao

    Error Correction for Cooperative Data Exchange

    Full text link
    This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allowed to broadcast only one linearly-coded message. Our error correction capability bound determines the maximum number of clients that can be compromised or failed without jeopardizing the final decoding solution at each client. We show that deterministic, feasible linear codes exist that can achieve the derived bound. We also evaluate random linear codes, where the coding coefficients are drawn randomly, and then develop the probability for a client to withstand a certain number of compromised or failed peers and successfully deduce the complete message for any network size and any initial message distributions

    Protective effect of astragalus injection against myocardial injury in septic young rats via inhibition of JAK/STAT signal pathway and regulation of inflammation

    Get PDF
    Purpose: To investigate the protective effect of astragalus injection against myocardial injury in septic young rats, and the underlying mechanism of action. Methods: Seventy-two healthy Sprague Dawley (SD) rats were randomly selected and used to establish a young rat model of sepsis. The young rats were randomly divided into 3 groups: sham, model and astragalus injection groups. Each group had 24 young rats. Serum cardiac troponin I (cTnI), IL-10, IL-6, JAK2 and STAT3 were measured after op. Results: Compared with sham group, serum cTnI level in the model group was significantly higher, while serum cTnI level of the drug group was significantly lower than that of the model group (p < 0.05). Compared with model group, the level of IL-10 in the myocardial tissue of the drug group was significantly elevated, while IL-6 level was lower (p < 0.05). Relative to sham rats, myocardial JAK2 and STAT3 protein levels in model rats were high. However, myocardial JAK2 and STAT3 proteins in the drug-treated rats were significantly downregulated, relative to model rats (p < 0.05). Conclusion: Astragalus injection upregulates IL-10 and IL-6 in rats by inhibiting the activation of JAK/STAT signal pathway, and via maintenance of pro-inflammation/anti-inflammation balance. Thus, astragalus exerts protective effect against myocardial injury in sepsis, and can potentially be developed for use as such in clinical practice. Keywords: Astragalus injection, JAK/STAT signal pathway, Pro-inflammatory/anti-inflammatory imbalance, Sepsis, Myocardial injur

    Bis(formato-κO)bis­[1-(pyridin-2-yl)ethanone oxime-κ2 N,N′]nickel(II)

    Get PDF
    In the title compound, [Ni(HCOO)2(C7H8N2O)2], the Ni atom is six-coordinated by four N atoms from two oxime ligands and by two O atoms from two formate ions in a distorted octa­hedral geometry, with the oxime-N atoms mutually trans. The mol­ecular conformation is stabilized by intra­molecular O—H⋯O hydrogen bonds

    Chlorido[1-(pyridin-2-yl)ethanone oximato-κ2 N,N′][1-(2-pyrid­yl)ethanone oxime-κ2 N,N′]copper(II) trihydrate

    Get PDF
    In the title compound, [Cu(C7H7N2O)Cl(C7H8N2O)]·3H2O, the metal ion is five-coordinated by the N atoms from the 1-(pyridin-2-yl)ethanone oximate and 1-(pyridin-2-yl)ethanone oxime ligands and by the chloride anion in a distorted square-pyramidal geometry. The distortion parameter is 0.192. The two organic ligands are linked by an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯Cl hydrogen bonds. The title compound is the hydrated form of a previously reported structure [Wu & Wu (2008 ▶). Acta Cryst. E64, m828]. There are only slight variations in the mol­ecular geometries of the two compounds

    An optimized encoding algorithm for systematic polar codes

    Full text link
    Many different encoding algorithms for systematic polar codes (SPC) have been introduced since SPC was proposed in 2011. However, the number of the computing units of exclusive OR (XOR) has not been optimized yet. According to an iterative property of the generator matrix and particular lower triangular structure of the matrix, we propose an optimized encoding algorithm (OEA) of SPC that can reduce the number of XOR computing units compared with existing non-recursive algorithms. We also prove that this property of the generator matrix could extend to different code lengths and rates of the polar codes. Through the matrix segmentation and transformation, we obtain a submatrix with all zero elements to save computation resources. The proportion of zero elements in the matrix can reach up to 58.5{\%} from the OEA for SPC when the code length and code rate are 2048 and 0.5, respectively. Furthermore, the proposed OEA is beneficial to hardware implementation compared with the existing recursive algorithms in which signals are transmitted bidirectionally
    corecore